Infrared Intensities as a Quantitative Measure of Intramolecular Interactions. III.^{1,2} Further Monosubstituted Benzenes and Monosubstituted Durenes

R. T. C. Brownlee,³ R. E. J. Hutchinson,⁴ A. R. Katritzky,³ T. T. Tidwell,³ and R. D. Topsom⁵

Contribution from the School of Chemical Sciences, University of East Anglia, Norwich. England, the School of Physical Sciences, La Trobe University, Melbourne, Australia, and the Department of Chemistry, University of Canterbury, Christchurch, New Zealand. Received September 5, 1967

Abstract: Integrated intensities for the v_{16} mode of 110 monosubstituted benzenes (with the substituent ring linked by halogen, oxygen, sulfur, nitrogen, or carbon) are tabulated together with σ_R° values for the substituents derived by a refined relation. Little variation of σ_R° occurs with solvent, but results for 11 monosubstituted durenes show that twisting of a noncylindrically symmetrical substituent decreases mesomeric interaction markedly. The σ_R° values generally compare well with those found by other methods and discrepancies can be explained. The nature of substituent-ring interactions is discussed. Consideration of the σ_R° values by compound classes inter alia provides evidence for significant conjugative interactions in cyclopropylbenzene, and confirms recent conclusions on the variation of nitrogen-ring interaction in N-phenyl cyclic imines.

Previous work indicated that a precise correlation, formulated initially as eq 1^{1} and later as eq 2^{2} , existed between $A^{1/2}$, the square root of the integrated absorbance of the ν_{16} ring bands⁶ in monosubstituted benzenes, and σ_R° for the substituents. The measurement of infrared intensities promised² to be a conve-

$$\sigma_{\rm R}^{\circ} = 0.0075 A^{1/2} \tag{1}$$

$$\sigma_{\rm R}^{\circ} = 0.0079 A^{1/2} - 0.027 \tag{2}$$

nient and reliable method for the determination of $\sigma_{\rm R}^{\circ}$ values, which are of great importance in the correlation and prediction of physicochemical properties. We have therefore extended our work on monosubstituted benzenes with the following main aims: (a) to further test the validity of, and if possible to further refine, eq 2; (b) to investigate the variation of $\sigma_{\rm R}^{\circ}$ values with solvent and with steric hindrance; (c) to elucidate the nature of substituent-benzene ring interactions; (d) to make available a wide range of $\sigma_{\rm R}^{\circ}$ values; (e) to illustrate the use of infrared intensity measurements in the clarification of specific problems involving substituent-ring interactions.

There have been many indications that the quantitative failure of the Hammett relation to correlate precisely all types of reactions is a result of the differences in resonance demands of various reaction types and sites (for reviews see ref 7 and 8). Many multiparameter equations have been postulated to account for this

- University of East Anglia, Norwich, England.
 University of Canterbury, Christchurch, New Zealand.
- (5) La Trobe University, Melbourne, Australia.
 (6) G. Herzberg, "Infrared and Raman Spectra of Polyatomic Molecules," D. Van Nostrand Co., Inc., Princeton, N. J., 1945.
 (7) C. D. Ritchie and W. F. Sager, *Progr. Phys. Org. Chem.*, 2, 071
- 323 (1964).

behavior; these equations can usually be written in a form equivalent to eq 3 (for recent explicit examples see ref 9). Accurate values for σ_{I} are

$$\log (k/k_0) = \rho_1 \sigma_1 + \rho_R \sigma_R^{\circ}$$
(3)

available for many substituents (see ref 10 and references contained therein); we believe that a large collection of reliable σ_R° values will be useful in further correlation work.

For the estimation of the effects of steric hindrance we have investigated monosubstituted durenes. As regards specific problems, we have chosen (i) the interaction of a benzene ring with cyclopropyl rings compared with other benzene-cycloalkyl group interactions, and (ii) the variation of the interaction of a benzene ring with a lone pair located on a nitrogen atom forming part of a saturated heterocyclic ring with the size of this ring.

We also recorded the intensities of the ν_{13} bands near 1500 cm⁻¹; these correlate² with σ_R° , but we defer further discussion until analogous work in progress on disubstituted benzenes is complete. Other workers have considered the intensities of other vibrations in monosubstituted benzenes; the intensity of the C-H aromatic stretching modes is directly related¹¹⁻¹³ to the σ_{I} value of the substituent. However, the intensities of the C-H out-of-plane bending modes for monosubstituted alkyl-14 and halobenzenes15 show no simple

- and G. T. Davis, *ibid.*, **85**, 709 (1963). (11) E. D. Schmid, V. Hoffmann, R. Joeckle, and F. Langenbucher, Spectrochim. Acta, 22, 1615 (1966).
- (12) E. D. Schmid, ibid., 22, 1659 (1966).

(15) R. P. Bell, H. W. Thompson, and E. E. Vago, Proc. Roy. Soc. (London), A192, 498 (1948).

⁽¹⁾ R. T. C. Brownlee, A. R. Katritzky, and R. D. Topsom, J. Amer. Chem. Soc., 87, 3260 (1965).

⁽²⁾ R. T. C. Brownlee, A. R. Katritzky, and R. D. Topsom, ibid., 88, 1413 (1966).

⁽¹³⁾ F. Matossi and E. D. Schmid, Z. Naturforsch., 21a, 1300 (1966).

⁽¹⁴⁾ A. S. Wexler, Spectrochim. Acta, 21, 1725 (1965), and references therein.

1758 Table I. Spectral Data and Calculated and Literature σ_R° values for Monosubstituted Benzenes

	Infrared	$\pm \sigma_{\rm R}^{\circ}$,	<i></i>	Lit. σ _R °		1600	band	1585	band		:	5100 ba	ind—
Compd	solvent	calcd	19Fa	React. ^b	Other	ν	€A ^c	ν	€A ^c	A^d	ν	$\epsilon_{A}{}^{c}$	$\epsilon^{1/2\sigma}$
PhH	CCl₄	0.00	0,00	0,00/			0		0	0	1480	53	17.7
PhD	CCl₄	0.00				1594	1			30	1479	43	18.8
PhF	CCl ₄	0.341	-0.32	-0.35	-0.34'	1597	213			2153	1497	375	32.3
PhCl	CCl₄	0.217	-0.18	-0.20	-0.20'	1585	68	1567	11	930	1489	226	33.7
PhBr	CCl ₄	0,231	-0.16	-0.19	-0.14^{f}	1580	84	1500		1044	1476	226	43.2
PhiCl.	CHCL	0.221	-0.14	-0.12	-0.08/	1574	139	1560	11	901 3/18	14/4	152	30.0
Ph ₂ I ⁺	DMSO	0.281	0.00		0.04	1566	45			1492	1409	122	36.8
PhOH	CCl₄	0,402	-0.43	-0.40	-0.45^{h}	1607	145	1598	201	2940	1499	268	38.5
PhOMe	CCl₄	0.428	-0.43	-0.41	-0.38'	1603	208	1590	96	3330	1498	304	44.4
PhOEt	CCl_4	0.439				1603.	233	1588	124	3500	1499	312	48.4
PhOPr'	CCl₄	0.428				1602	174	1589	169	3334	1495	392	50.5
Ph ₂ O PhOCOMe	CCI	0,364	-0.31		-0.32^{n}	1592	114	1586	168	2421	1488	459	47.9
PhOCOCE	CCL	0.233	-0.21 -0.20			1590	78			1075	1493	250	34.8
PhOSO ₂ Me	CCl	0.264	0,20			1591	85			1326	1489	399	40.0
PhOCF ₃	CCl₄	0.250	-0.18	-0.17	-0.04^{h}	1594	71			1205	1492	256	39.1
PhOH	D_2O	0.424	-0.43	-0.40	-0.38/	1603	284	1585	91	3268	1493	207	41.9
PhO-Na ⁺	D₂O	0.593	-0.60	-0.66	-0.60'	1588	324			6290	1482	669	79.6
PhSH	CCl₄	0.195	-0.15	0.04	0.10	1586	47			764	1481	135	27.6
PhSMe	CCL	0.250	-0.17	-0.24	-0.16^{n}	1585	02 46			750	1482	143	20.8
Ph _s S	CCL	0 189			-0.07	1582	60			728	1462	116	20.0
PhSCOMe	CCl₄	0.081			0.07	1586	17			215	1499	112	22,4
PhSCF₃	CCl₄	0.00			+0.06	1584	9			89	1477	38	15.7
PhS-Na+	D_2O	0.334				1579	115			2065	1474	102	26.7
PhSO ₃ [−] Na ⁺	D ₂ O	0.00	+0.07		40.07 م	1610	3	1590	3	100	1482	20	15.4
Pn_2SO_2 PhSO Me		0.064	10.16		10.16	1585	13		0	1/2	1480	16	11 2
PhSO ₂ Me	CCL	0.009	+0.10	+0.08	$+0.10^{-1}$	1509	12	1575	3	233	1462	23	10.9
PhSO ₂ Cl	CCl	0.108				1585	21	10/0	0	304	1479	26	12.0
PhSO ₂ ⁻ Na ⁺	D_2O	0.00				1610	2	1582	3	80	1478	25	14.1
Ph ₂ SO	CCl₄	0.065				1583	13	_		178	1478	39	12.6
PhND ₂	CCl ₄	0.467	-0.48	-0.48	-0.48^{7}	1607	359	1585	23	3950	1501	336	46.7
PhNDMe	CCL	0.522				1607	338	1587	28	4897	1509	474	51.0
PhNMe ₂	CCL	0.523	-0.54	-0.52	-0.50/	1604	346	1578	45	5098	1508	262	50.0
PhNHEt	CCl4	0.520		••••	0.00	1605	308	10/0		4865	1506	376	60,6
PhNHBu ⁿ	CCl4	0.536				1604	344			5170	1506	360	65.7
PhNHPr	CCl₄	0.533				1603	346			5104	1505	392	59.2
PhNEt ₂	CCl₄	0.571				1607	293	1582	59	5852	1513	370	63.9
$PnN(CH_2)_2$ $PhN(CH_2)_2$	CCI	0.382				1600	305 540	1584		2003			
$PhN(CH_2)_3$	CCL	0.552				1596	540	1569		7039			
1	0014	0.020				160	1	1207		1005			
$PhN(CH_2)_5$	CCl ₄	0.474				1 599	320	1579		4045			
Ph₂NH	CCl₄	0.504				1594	531	1566	26	4576	1495		
Ph_3N PhN(CE)	CCI_4	0.438	0.00		0.014	1589	191	1503	22	3489	1495	338	32.2
PhNHNH	C ₄	0.132	-0.43		-0.40^{h}	1505	325	1392	22	405	1492	342	50.6
$Ph_{0}(NH)_{0}$	CCL	0.441	0.45		0.40	1602	399			3523	1 127	0 12	20.0
PhNHOH	CHCl ₃	0.222				1605	71			963	1494	107	23.1
PhNMeCOMe	CHC13	0.408				1599	373			3040	1499	358	42.3
PhNHCOMe	CHCl ₃	0.413	-0.30	-0.20	-0.21^{h}	1602	234			3115	1499		
PhNO Ph N	CCI_4	0.0/1	+0.33		$+0.32^{\circ}$	1595	13			189	1485	107	23 1
PhNCO	CCI_4	0.030	+0.02		-0.17g	1601	20	1587	64	2957	1405	145	42.4
PhNCS	CCl4	0.354	-0.06		-0.07^{g}	1595	200	1507	04	2182	1491	300	31.9
PhNSO	CCl ₄	0.087			$+0.13^{h}$	1600	3	1575	21	235	1484	131	21.2
PhNCNPh	CCl₄	0.461				1595	461			3856	1489	523	58.3
PhNO ₂	CCl₄	0.174	+0.19	+0.16'	$+0.20^{\circ}$	1608	42	1591	13	634			
$PnN_2^{+}BF_4^{-}$	D₂O D O	0,304			+0.65*	1591	128			680	1 500	130	30.2
PhND ₃ Me ⁺ Cl ⁻	$D_2 O$ $D_2 O$	0.183			-0.05	1602	31			492	1498	150	50.2
PhNDMe ₂ +Cl ⁻	D_2O	0.136				1601	23			428	1498		
PhNMe ₃ +Cl-	D_2O	0.149			-0.09^{h}	1599	28			490	1495	165	51.5
PhNDCMeNDPh+Cl-	D₂O	0.585	0.15	0.10	0.044	1590	396			6104	1.40 €	70	10 4
PhMe		0.099	-0.15	-0.10	-0.067	1605	27	1584	4	2/3	1490	70 69	19.0
PhPr ⁿ	CCL	0.109	-0.14	-0.09		1602	24	1586	7	310	1497	68	20.2
PhPri	CCl₄	0.115				1605	20	1583	4	332	1494	63	20.0
PhBu ^a	CCl ₄	0.115				1604	19	1585	5	330	1494	66	19.7
PhBu ^r	CCl ₄	0.125			-0.17	1602	25	1584	5	377	1498		
PhCH(CH ₂) ₂	CCL	0.175				1602	33	1579		369			
PhCH(CH ₂) ₄	CCl₄	0.136				1603	33	1581		438			

Journal of the American Chemical Society | 90:7 | March 27, 1968

	Infrared	$\pm \sigma_{\rm R}^{\circ}$,	· · · · · · · · · · · · · · · · · · ·	-Lit. $\sigma_{\rm R}^{\circ}$ -		1600	band	1585	band			5100 ba	.nd
Compd	solvent	calcd	¹⁹ F ^a	React.b	Other	ν	€A°	ν	€A ^c	A^d	ν	€A ^c	$\epsilon^{1/2e}$
PhCH(CH ₂) ₅	CCl₄	0.128				1601	33	1581		392			
PhCH₂CHO	CCl₄	0.110				1603	18	1587	7	314	1499	56	20.5
PhCH₂CN	CCl₄	0.090	-0.08			1605	16	1589	5	241	1498	113	18.4
Ph_2CH_2	CCl₄	0.117			-0.08^{h}	1602	51	1586	12	339	1496	130	31.2
PhCH₂OH	CCl₄	0.00	-0.07		-0.06^{h}	1608	4	1587	3	95	1497	36	14.0
PhCH ₂ OMe	CCl₄	0.054				1603	5	1587	4	150	1497	40	15.3
PhCHBr ₂	CCl₄	0.00				1603	3	1586	5	99	1495	47	13.8
PhCH₂Cl	CCl ₄	0.00	-0.03			1604	3	1587	3	90	1497	46	14.3
Ph₃CH	CCl₄	0.113			-0.12^{h}	1599	82	1583	17	324	1496	270	32.8
PhCH(OCH ₂) ₂	CCl ₄	0.00				1610	2	1590	2	55	1494	17	
PhCH₂Br	CCl₄	0.00				1602	3	1587	3	100	1497	49	15.5
PhCHCl ₂	CCl₄	0.00			$+0.02^{h}$	1598	3	1586	3	80	1499	25	13.1
Ph₄C	C ₆ H ₆	0.130				1597	23			398	1494		
PhCH _z ND ₃ +Cl ⁻	D_2O	0.00	0.00		$0, 0^{h}$	1607	1	1599	2	60	1501		
PhCCl ₃	CCl₄	0.00	0.00		$+0.02^{h}$	1584	1			15	1499		
PhCBr ₃	CCl₄	0.00			$+0.03^{h}$	1602	2	1584	2	61	1492	65	15.1
PhCF ₃	CCl₄	0.111	+0.10	+0.08'	$+0.10^{a}$	1611	33			317			
PhC_2F_5	CCl₄	0.075	0.110			1610	15			198	1502	18	9.5
Ph ₂	CCl₄	0.096	-0.09	-0.10	-0.097	1598	22	1582	4	260	1484	104	20.4
PhCHCH ₂	CCl₄	0.050	-0.03		-0.03	1602	7	1576	13	144	1496	98	16.2
PhCHCHCOOEt	CCl4	0.100				1580	39			277	1498	54	17.2
PhCHCHNO ₂	CCl₄	0.127	+0.16			1604	15	1580	45	387	1497		
PhCHCHN(CH ₂) ₅	$C_{6}H_{12}$	0.311				1600	213	1575	28	1800	1499	48	16.7
PhCHO	CCl₄	0.244	+0.27			1598	81	1586	71	1150	1480	2	3.0
PhCOMe	CCl4	0.219	+0.19	+0.18'		1601	77	1581	38	940	1491	4	5.1
Ph ₂ CO	CCl₄	0.190			$+0.17^{h}$	1602	111	1580	61	746	1488	0	0
PhCOOH	CCl₄	0.292			$+0.21^{h}$	1607	101	1586	98	1598	1496	33	11.6
PhCOOMe	CCl₄	0.155				1603	55	1583	15	526	1493	144	29.4
PhCOOEt	CCl₄	0.180	+0.19	+0.12'		1603	45	1585	32	670	1491	11	8.1
PhCOCl	CCl₄	0.213	+0.30		$+0.32^{h}$	1598	70	1585	47	899	1487	7	6.6
Ph_2C_2	CCl₄	0.152				1605	42	1575	7	509	1501	126	25.0
PhCCH	CCl₄	0.072			+0.08*	1599	11	1575	10	190	1489	118	20.3
PhCN	CCl₄	0.085	+0.21	+0.10'	$+0.22^{h}$	1600	12	1583	6	228	1492	74	17.7
$PhCF(CF_3)_2$	CCl₄	0.023	0.049		$+0.06^{h}$	1605	4	1593	3	109	1502	38	18.3
PhCOH(CF ₃) ₂	CCl₄	0.110	0.029	+0.02		1605	12			313	1504	36	18.6
PhSF ₅	CCl ₄	0.000			$+0.07^{h}$	1597	3			85	1488	71	19.8
PhC(OMe) ₃	CCl ₄	0.000			-0.01 ^h	1620	3	1604	1	77			

^a ¹⁹F values from ref 34, or calculated from figures for dilute solution in cyclohexane using the formulas therein, and ref 10. Zero values are taken from ref 32. ^b Reactivity values collected in ref 34, and taken from J. Hine, J. Amer. Chem. Soc., 82, 4877 (1960). ϵ_{A} is the peak extinction coefficient; $\epsilon_A = A_{\text{max}}/cl$. ^d A is the integrated intensity of the 1600- and 1585-cm⁻¹ band; $A = \Sigma A/cl$. ^e ϵ is an estimate of the integrated intensity given by $\epsilon = \epsilon_A \Delta \nu^{1/2}$. / Reactivity value from R. W. Taft, S. Ehrenson, I. C. Lewis, and R. E. Glick, J. Amer. Chem. Soc., 81, 5352 (1959); values are 2.0 σ_R^m . σ Reference 63 ¹⁹F value. h Private communication by R. W. Taft and W. A. Sheppard giving ¹⁹F values. ¹⁹F values from F. S. Fawcett and W. A. Sheppard, J. Amer. Chem. Soc., 87, 4341 (1965).

variation with the usual substituent parameters although a limited correlation with dipole moments has been reported¹⁶ (see also ref 17). Russian workers^{18,19} have correlated the logarithms of the intensities of the Raman bands near 1600 cm⁻¹ for monosubstituted benzenes with Hammett σ constants; however, we found no precise relation between the reported Raman and our measured infrared intensities.

It is of interest that the effect of substituents on the integrated intensity of the ν_{CN} in substituted phenyl cyanides is better correlated by reactivity parameters than the effect of substituents on the $\nu_{\rm CN}$ frequency.²⁰

Experimental Section

Vapor phase chromatography and/or melting points were used as criteria for purity throughout. The monosubstituted benzenes were mainly commercial samples or simple derivatives of them. The fluorinated compounds were kindly supplied by Dr. W. A.

Sheppard, Experimental Station, Du Pont. Benzene iodine dichloride^{21a} and N- β -phenylvinylpiperidine²² were made by literature methods. Amino compounds were deuterated on nitrogen by shaking twice with excess deuterium oxide, and the purity of the distilled products was checked by the absence of N-H bands. N-Phenylazetidine was prepared²³ by the aluminium chloride catalyzed decomposition of 3-amino-1-phenoxy-N-phenylpropane using the general method²⁴ employed for the preparation of chromans from the corresponding diphenoxypropanes. The other N-phenylimines were prepared by standard methods.

Hydroxy-, methoxy-, nitro-, chloro-, bromo-, iodo-, and cyanodurenes were kindly donated by Professor G. Illuminati, University of Rome, and were used as supplied. Commercial pentamethylbenzene was found to be pure by vpc. Aminodurene was obtained from dinitrodurene²⁵ by reduction to aminonitrodurene,²⁶ deamination, and further reduction;27 it was purified by recrystallization, fractional sublimation up to 80° (0.2 mm), and further recrystallization from 80% ethanol, to mp 65-72° (lit.28 74-74.5°); nmr ex-

⁽¹⁶⁾ Y. Kakiuchi and T. Shimozawa, Proc. Intern. Symp. Mol. Struct. Spectry. Tokyo, C215 (1962); Chem. Abstr., 61, 3817 (1964).

⁽¹⁷⁾ A. R. H. Cole and A. J. Michell, Spectrochim. Acta, 20, 739 (1964).

⁽¹⁸⁾ Y. S. Bobovich and N. M. Belyaevskaya, Opt. Spectry., 19, 111 (1965).

⁽¹⁹⁾ Y. S. Bobvich, *ibid.*, 20, 136 (1966).

⁽²⁰⁾ O. Exner and K. Boček, Tetrahedron Letters, 1433 (1967).

⁽²¹⁾ A. I. Vogel, "Practical Organic Chemistry," 3rd ed, Longmans, Green, and Co., London, 1961: (a) p 541; (b) p 572 (22) C. Mannich and H. Davidsen, Chem. Ber., 69, 2106 (1936).

⁽²³⁾ L. W. Deady, R. E. J. Hutchinson, R. D. Topsom, and J. Vaughan, to be published. (24) L. W. Deady, R. D. Topson, and J. Vaughan, J. Chem. Soc.,

^{5718 (1965).}

⁽²⁵⁾ A. H. Blatt, Ed., "Organic Syntheses," Coll. Vol. II, John Wiley and Sons, Inc., New York, N. Y., 1943, p 254. (26) C. E. Ingham and G. C. Hampson, J. Chem. Soc., 981 (1939).

⁽²⁷⁾ G. Illuminati, J. Amer. Chem. Soc., 74, 4951 (1952).
(28) B. M. Wepster, Rec. Trav. Chim., 76, 357 (1957).

amination then showed approximately 5% impurity. Dimethylaminodurene was prepared from the primary amine by reaction with trimethyl phosphate;^{21b} the product was steam distilled directly from the basified reaction mixture; nmr and infrared spectra showed no N-H absorption. Purification by sublimation (0.5 mm, 100°) and then recrystallization from 50% ethanol gave white plates, mp 45-51° (lit.²⁸ 52-53°), with no impurities visible in the nmr. Fluorodurene was obtained via the Schiemann reaction²⁹ on aminonitrodurene followed by reduction and deamination²⁹ and purification by chromatography on alumina, sublimation (0.2 mm, 60°), and finally recrystallization from 50% ethanol, to mp 55-58° (lit.²⁹ 54.5-55°); it showed no impurities in the nmr. For some durenes, the lower band appeared as a shoulder on other bands at lower wave number, and large base-line corrections were needed. For many of the durenes insufficient material was available for more than a single solution, although duplicate determinations were made on this solution ($A^{1/2}$ reproducible to ± 1 unit); where duplicate solutions were available the $A^{1/2}$ values were also reproducible within ± 1 unit.

Carbon tetrachloride, cyclohexane, and 2-propanol were spectroscopic grade solvents. Chloroform was purified by passing it through alumina immediately prior to use; dimethyl sulfoxide was dried over CaH2. Deuterium oxide (Imperial Chemical Industries Ltd.) was used without further purification. The spectroscopic technique for the nonpolar solvents in the sodium chloride cells and the integration procedure for the 1600- and 1500-cm⁻¹ bands were as previously reported.²

The spectra of solutions in deuterium oxide or dimethyl sulfoxide were recorded using a balanced pair of Irtran II cells (~ 0.05 mm). Spectra when recorded in these cells were superimposed upon the interference pattern which altered in position as the cell heated in the spectrometer. Previous workers³⁰ have subtracted such interference patterns, but we did not find this procedure satisfactory. The interference pattern can be removed by grinding one plate in each cell to a mat surface using fine carborundum powder. The cells then have a constant base line, even when the cell heats up; however, the cell length can still be measured in air using the interference method. The reproducibility of $A^{1/2}$ is ± 1 for most cases in nonpolar solvents, except that where the compound was sparingly soluble or there were interfering bands (e.g., PhICl₂, PhNO₂, and compounds containing the groups C=C or C=O) the reproducibility fell to ± 4 in $A^{1/2}$. For the polar solvents, balancing is not possible, and the error is ± 4 in $A^{1/2}$.

For compounds having more than one benzene ring, the A, ϵ_A , and $\epsilon^{1/2}$ values have been divided by the number of benzene rings.

Results

Table I collects the data for the 1600- and 1500-cm⁻¹ bands for the monosubstituted benzenes now reported, and includes values from the previous paper:² it records band positions, extinction coefficients, and integrated intensities together with literature and calculated σ_R° values. Table II gives the experimental

Table II. A Values for Monosubstituted Durenes Compared with σ_R° Values for Corresponding Benzenes

Sub- stituent	Solvent	Frequency, cm ⁻¹	A (durene)	$\sigma_{\rm R}^{\circ}$ (benzene)
F	CCl ₄	1634, 1572	1063	0.341
	$C_{6}H_{12}$	1634, 1572	984	0.341
Cl	$C_{6}H_{12}$	1612, 1560	472	0.217
Br	CC14	1607, 1548	738	0.231
	$C_{6}H_{12}$	1608, 1550	655	0.231
I	C_6H_{12}	1604, 1538	576	0.221
NO_2	CCl ₄	1624	87	0.174
OMe	$C_{6}H_{12}$	1616, 1566	875	0.428
ОН	CCl₄	1626, 1574	1940	0.402
Me_2N	CCl₄	1604, 1566	540	0.533
Me	$C_{6}H_{12}$	1608, 1570	147	0.099
CN	C_6H_{12}	1606	84	0.085

(29) G. Grassini, G. Illuminati, and G. Marino, Gazz. Chim. Ital., 86, 1138 (1956); Chem. Abstr., 52, 1937a (1958).

(30) C. A. Swenson, Spectrochim. Acta, 21, 987 (1965).

data for the durenes. Table III records the solvent dependence for the 1600-cm⁻¹ band intensities of selected compounds.

Table III. Variation of Integrated Intensities $(A^{1/2}$ Values) with Solvent

Substituent	$C_6H_{l^2}$	CCl₄	CHCl ₃ (CH ₃) ₂ CHOH
NMe ₂	69.0	71.4	70.3	68.7
OMe	58.3	57.7	55.8	57.7
ОН	52.3	54.2	55.9	60.1
F	47.4	46.4	45.7	46.6
Br	31.7	32.3	31.2	31.2
Cl	29.5	30.5	30.2	29.3
NO_2	22.2	25.2	22.8	21.7
Me	16.0	16.6	18.6	16.7
CN	15.9	15.1	15.4	14.2

Few precise intensity data for these bands have been reported in the literature. Wexler¹⁴ measured the integrated intensities of alkylbenzenes; his values (Me, 280; Et, 280; *i*-Pr, 310; sec-Bu, 340; t-Bu, 430) agree to within ca. 5% with our values except for t-butyl. Earlier measurements of ϵ_A values,³¹ made on a prism instrument, are generally about 70% of the ϵ_A values now reported in Table I. The $\pm \sigma_R^{\circ}$ values given in this table are those calculated using eq 5.

Discussion

Comparison of Measured with Previous σ_R° Values and Refinement of σ_R° Intensity Relationship. A detailed comparison of σ_R° values derived from our previous² eq 2 with all the literature values available discloses the following results.

(i) Agreement within $0.03\sigma_{\rm R}^{\circ}$ unit with both fluorine nmr and reactivity values where these are available for following substituents: NMe₂, ND₂ (NH₂), OMe, OH, F, Ph, OAc, CF₃, CH₂Cl, CCl₃, CHO, COMe, CO₂Me, NO₂. The σ_R° from eq 2 for the substituent O- agrees excellently with the fluorine nmr value, but shows a discrepancy of 0.05 with the reactivity value. Slightly greater discrepancies (up to 0.05 units) are shown between the infrared and the fluorine nmr values for the substituents OPh, Me, Et.

(ii) The infrared-derived σ_R° values are larger than the fluorine nmr σ_R° values by 0.04–0.09 unit for the substituents Cl, Br, SH, and SMe. We believe that this discrepancy is due to interactions involving d orbitals in the corresponding para-substituted fluorobenzenes used for the nmr determinations; previous evidence for such interactions³² is confirmed by work presented in an accompanying paper.33 For the substituents Cl and SMe, our σ_R° values are in good agreement with reactivity values; unfortunately, no such data are available for SH, and alternative reactivity values for Br are widely divergent (0.14, 0.19; see ref 34 and Table I).

(iii) Significant overlap of the ν_{16} ring mode with the substituent vibration at 1631 cm⁻¹ for styrene may invalidate the infrared-derived σ_R° value for the group

 (31) A. R. Katritzky and J. M. Lagowski, J. Chem. Soc., 4155 (1958).
 (32) R. W. Taft and J. W. Rakshys, Jr., J. Amer. Chem. Soc., 87, 4387 (1965).

(33) P. J. Q. English, A. R. Katritzky, T. T. Tidwell, and R. D. Topson, J. Amer. Chem. Soc., 90, 1767 (1968).
(34) R. W. Taft, E. Price, I. R. Fox, I. C. Lewis, K. K. Andersen,

and G. T. Davis, ibid., 85, 3146 (1963).

CH=CH₂. The infrared-derived σ_R° values are considerably lower than the fluorine nmr values for the CN and SO₂Cl substituents. For the former, the infrared and reactivity values agree; no reactivity data are available for SO₂Cl. The discrepancies with the fluorine nmr results could be due to mutual conjugation in the *para*-substituted fluorobenzenes; however, the fluorine nmr measurements were made in the nonpolar solvent CCl₄ where no large interaction is expected (this is underlined by our own results with the *para*-disubstituted fluorobenzenes³) and, significantly, no such discrepancies were found for the substituents CO₂Me, CHO, COMe, NO₂.

(iv) The substituents NCS, OCF_3 , SCF_3 , and N-(CF_3)₂ are discussed later.

We previously² justified the nonzero intercept at zero σ_R° in eq 2 on the grounds that monosubstituted benzenes should have a combination band at about 1600 cm⁻¹ arising from C-H out-of-plane bending fundamentals. However the correction for the intensity of this combination band should more correctly be made before taking the square root of the total intensity, since a dependence between the former and σ_R° is otherwise implied. We have therefore plotted A values against (σ_R°)² (Figure 1) for all the substituents in group i above using both nmr and reactivity values, and additionally, for the substituents Cl and SMe from group ii using only reactivity values. The results were treated statistically using a least-squares procedure and the equation derived was

$$(\sigma_{\rm R}^{\circ})^2 = 6.10A \times 10^{-5} - 0.0136$$
 (4)
(correlation coefficient 0.998)

Equation 4 implies that the combination band has a constant intensity of 220; we believe this to be too high, since a considerable number of monosubstituted benzenes have a total intensity of less than 100. We have therefore chosen to assign a value of 100 to the intensity of the combination band in this region and to define our value of σ_R° by eq 5 which is derived by a least-

$$A_{\rm mono} = 17,600 (\sigma_{\rm R}^{\circ})^2 + 100$$
 (5)

squares plot for the line passing through the point (0, 100). We believe that the likely range of error in the value of the combination band is ± 50 (cf. Figure 1).

The uncertainty in the intensity of the combination band clearly has a much greater effect on small values of σ_R° than on large. The percentage error in σ_R° thus caused is 56% at $\sigma_R^{\circ} = 0.05$, 14% at $\sigma_R^{\circ} = 0.1$, 6% at $\sigma_R^{\circ} = 0.15$, and 3% at $\sigma_R^{\circ} = 0.2$. We plan in later work to check all the values of σ_R° less than 0.15 by measurements on polysubstituted compounds.

Solvent Variation of σ_R° . Few experimental data are available concerning the effect of substituents on single reactions over a range of solvents,⁷ and thus it is at the moment difficult to assess the solvent variation of σ_R° from the reactivity standpoint.

The difference between the fluorine chemical shift of a *meta*-substituted fluorobenzene and that of internal fluorobenzene, which is proportional to the inductive σ parameter (σ_I) for the substituent, shows little variation with solvent except when the substituent is subject to specific solvent interactions such as hydrogen bonding.¹⁰ A strongly solvent-complexed substituent should

Figure 1. Plot of A for monosubstituted benzenes against the squares of the literature σ_{R}° values: O, reactiviy; \times , fluorine nmr.

have a different electronic configuration from one not so complexed, so that these exceptions are not surprising. The chemical shift difference between *para*- and *meta*-substituted isomeric fluorobenzenes, which can be used for calculating σ_R° values, also shows³⁴ little solvent variation, provided the substituent in question is of the electron donor or weakly interacting type, unless specific solvent-substitutent interactions occur. However, for electron acceptor substituents, these *para/meta* differences show³⁴ variations which correspond to variations of the order of 0.1 in σ_R° ; we discuss this matter further in our consideration of *para*-disubstituted benzenes.³³

Deviations from linear correlations of acidities with σ constants were also found for 4-substituted bicyclo-[2.2.2]octane-1-carboxylic acids in different solvents.³⁵ However, most of the substituents investigated could be subject to specific solvent-substituent interactions and it is not clear whether "normal" solvent effects would affect the linear correlation of these substituent effects. A reported³⁶ dependence of infrared intensities on the $\sigma_{\rm I}$ value of the group R in solvents RH appears to be of doubtful general validity.

We have examined the solvent effects on the intensity of the ring-stretching mode for a variety of substituents (Table III). Except for phenol, where the intensity shows a marked increase from cyclohexane through 2propanol presumably due to specific hydrogen bonding, the variations in intensity are small and apparently

⁽³⁵⁾ C. D. Ritchie and E. S. Lewis, J. Amer. Chem. Soc., 84, 591 (1962).
(36) S. Tanaka, K. Tanabe, and H. Kamada, Spectrochim. Acta, 23a, 209 (1967).

Figure 2. Plot of A for durenes against the squares of the $\sigma_{\rm R}^{\circ}$ values for the corresponding monosubstituted benzenes.

random. We conclude that unless strong specific solvent-substituent interactions occur, the ring-substituent interactions are little affected. This conclusion is in good agreement with the results found for the nmr of the meta-substituted fluorobenzenes.¹⁰

Steric Effects. Durene Results. Fundamental to present theories on conjugation is the concept of the reduction of mesomeric interaction between ring and substituent by twisting. For example, from the fluorine nmr of 3-methyl-4-dimethylaminofluorobenzene, Taft, et al.,³⁴ found the value $\sigma_R^{\circ} = -0.24$ for the twisted NMe_2 group, a reduction of 56 % by the steric effects of one o-methyl group. To test the effect of steric hindrance on infrared intensities we have utilized substituted durenes (I). The infrared spectrum of durene (I, Y = H) shows no band near 1600 cm⁻¹; the ν_{16} mode is forbidden because of the D_{2h} symmetry of the molecule. Although a normal coordinate analysis has apparently not been carried out for durene, the form of the modes for 1,2,4,5-tetrachlorobenzene³⁷ suggests that the ν_{16a} mode will not be very different from that in benzene. Steric hindrance in durenes has been the subject of considerable earlier work, and decrease in conjugation of substituents compared with that in phenyl derivatives has been demonstrated by uv spectra,³⁸ dipole moments,³⁹ nmr shielding,⁴⁰ and chemical reactivity.41

In Figure 2 the A values for the durenes (Table II) are plotted against $(\sigma_R^{\circ})^2$ for the corresponding substituent. Substituents with cylindrical symmetry (CN, CH₃, halogens, and possibly OH) show a linear relation found by the least-squares procedure to be as in eq 6; the small nonzero intercept is probably not significant. The lower over-all values for the durenes for the symmetrical substituents may be a result of a decreased contribution of CH wagging mode to the ν_{16} for durene as compared with benzene.42

Equation 6 implies that in the durene system, the substituents of low symmetry, NMe₂, OMe, NO₂, exhibit effective σ_R° values of 0.225, 0.280, and 0.102, respectively. This indicates steric inhibition of respectively

(37) J. R. Scherer, "Planar Vibrations of Chlorinated Benzenes," The Dow Chemical Co., Midland, Mich., 1963.
(38) B. M. Wepster, *Rec. Trav. Chim.*, 76, 355 (1957).
(39) H. Kofod, L. E. Sutton, P. E. Verkade, and B. M. Wepster,

ibid., 78, 790 (1959); R. H. Birtles and G. C. Hampson, J. Chem. Soc., 10 (1937).

(40) P. Diehl and G. Svegliado, Helv. Chim. Acta, 46, 461 (1963). (41) E. Baciocchi and G. Illuminati, J. Amer. Chem. Soc., 86, 2677

(1964)

(42) D. H. Whiffen, Spectrochim. Acta, 7, 253 (1965).

58, 35, and 41% of the resonance interaction. If the angle of twist is related to the resonance interaction by an equation of the type $\sigma_R^t = \sigma_R^\circ \cos \phi$, where σ_R^t indicates the value for the twisted substituent, then this corresponds to angles of twisting as follows: NMe₂, 65°; OMe, 49°; NO₂, 54°. (Such treatment assumes

$$A_{\text{durene}} = 11,300(\sigma_{\text{R}}^{\circ})^2 - 30$$
(6)
(correlation coefficient = 0.976)

implicitly that π -inductive effects are completely absent cf. ref 43.)

Available data from the literature suggest considerable twisting of the methoxy group out of the plane of the ring and significantly less twisting for the hydroxy group. The classification of the hydroxy group with the non-twisted substituents for the purpose of determining the least-squares plot may not be justified; indeed the angles of twist calculated from the uv data44a for hydroxy- and methoxybenzene and -durene by the relation^{44b} $\epsilon/\epsilon_0 = \cos^2 \phi$ yield values of 37 and 63° for OH and OMe, respectively. However, other measurements suggest considerably less twisting for the hydroxy group. Molecular polarizabilities indicate an angle of twist of 14° for a hydroxy flanked by two o-tbutyl groups, whereas two o-methyl groups on this criterion apparently cause an angle of twist for the methoxy group⁴⁵ of 90°; such data are of limited reliability. There is only a small change in dipole moment due to twisting in the hydroxy compound (μ for phenol is 1.61 D, and for hydroxydurene, 1.68 D);²⁶ the dipole moment for methoxydurene is unfortunately not recorded. The OH stretching frequency for hydroxydurene also indicates essential coplanarity of the O-H and the ring.⁴⁶ Yukawa, et al.,⁴⁷ concluded that there is no steric interference with resonance stabilization by the hydroxy group in the bromination of hydroxydurene, but there is substantial retardation due to twisting in the bromination of methoxydurene and methylthiodurene.

Ultraviolet spectral comparisons with nitrobenzene indicate an angle of twist of 71° for nitrodurene (nitrobenzene, ϵ_{max} 8900; nitrodurene, ϵ_{max} 990)³⁸ by the equation given above. These ϵ_{max} values and those for other nitrobenzene derivatives with varying degrees of twist are linearly related to other data such as molecular refractions, and also to the base strengths and deacylation rate constants for the corresponding amino-substituted compounds.³⁸ The effect of twist is also shown in the dipole moments (nitrobenzene, 4.01 D; nitrodurene, 3.62 D) but these moments are not linearly related to the other properties.⁴⁷ Baciocchi and Illuminati⁴¹ conclude from reactivity data that the nitro group in nitrodurene has lost ca. 50% of its resonance compared with nitrobenzene. An angle of twist of 69° is indicated for N,N-dimethylaminodurene by uv extinction coefficients (N,N-dimethylaminodurene, ϵ_{max}

⁽⁴³⁾ M. J. S. Dewar and Y. Takeuchi, J. Amer. Chem. Soc., 89, 390 (1967).

^{(44) (}a) A. Burawoy and J. T. Chamberlain, J. Chem. Soc., 2310 (1952); these data on the methoxy compounds are confirmed by L. J. Frolen and L. Goodman, J. Amer. Chem. Soc., 83, 3405 (1961). (b) This equation is used, for example, in ref 38.

⁽⁴⁵⁾ M. J. Aroney, M. G. Cornfield, and R. J. W. Le Fèvre, J. Chem. Soc., 2954 (1964).

 ⁽⁴⁶⁾ N. A. Puttnam, *ibid.*, 5100 (1960).
 (47) Y. Yukawa, Y. Tsuno, and M. Sawada, *Bull. Chem. Soc. Japan*, 39, 2274 (1966).

2090; N,N-dimethylaniline, ϵ_{max} 5500). For a summary of literature data on reactivities of durenes see also ref 48. We conclude that there is over-all qualitative, and indeed reasonable quantitative, agreement between the infrared results and reactivity data which strongly supports the view that σ_R° values derived from infrared intensities are indeed a measure of mesomeric interaction.

Nature of the Interaction. Infrared Aspects. The normal coordinates of the vibrations ν_{16a} and ν_{16b} for benzene itself have been shown³⁷ to be as in II and III. Calculations for a variety of monosubstituted benzenes⁴⁹ have indicated that the form is but little altered. Evidently, little mixing normally occurs between ν_{16} and substituent modes in monosubstituted benzenes. The frequency of ν_{16} is known to be remarkably insensitive to substituent type in monosubstituted benzenes except that a significant effect of mass is noticed for substituents linked by an element not in the first row of the periodic table.

Some insight into the nature of the substituent-ring interaction may be obtained by a valence bond treatment. In a monosubstituted benzene, during the vibration ν_{16a} there is a distortion of the molecule in the sense of $IV \rightleftharpoons V$ (where the effect is much exaggerated). The shorter bonds will have greater double bond character and the longer bonds greater single bond character, as shown. If the substituent Y is capable of resonance interaction with the ring, then canonical forms of types either VI or VII (whether VI or VII will depend on whether Y is an electron donor or acceptor) will be of greater importance for IV than for V. This will lead to an oscillating dipole during the vibration and hence to intensity in the infrared spectrum. The π dipole moment change with respect to the normal coordinate of the vibration is evidently directly proportional to σ_R° , for together with eq 7, this leads to the

$$A = \frac{N\pi}{3c^2} \left(\frac{\partial\mu}{\partial Q}\right)^2 \tag{7}$$

observed relation 5 (the second term in eq 5 is due to a combination band 42).

We are at present investigating possible quantitative relations between MO parameters, A, and $\sigma_{\rm R}^{\circ}$ (cf. ref 50).

Nature of the Interaction. Physical-Organic Aspects. The detailed interpretation of substituent effects is presently in a state of flux. Exner claims⁵¹ that classi-

- (48) E. Baciocchi and G. Illuminati, submitted for publication.
- (49) J. R. Scherer, Spectrochim. Acta, 21, 321 (1965).
 (50) T. L. Brown, J. Chem. Phys., 43, 2780 (1965).
- (51) O. Exner, Collection Czech. Chem. Commun., 31, 65 (1966).

cal electron-accepting substituents, such as nitro, interact effectively only by the inductive effect, whereas Fueno, et al., 52 believe that the π effects are dominant and inductive effects can be allowed for in calculations by correction terms. The importance of direct field effects has been emphasized.53 Dewar has recently questioned^{54,55} the whole basis of Taft's conclusions from fluorine nmr; he also now concludes that π inductive effects are relatively unimportant.⁴³ One of the objects of the present study, together with cognate work on polysubstituted compounds, was to illuminate the origins and methods of propagation of substituent effects.

Exner⁵¹ (cf. also ref 56 and 57) has shown that for the pK of $XC_6H_4CO_2H$ in 80% methyl Cellosolve, and for a large number of other ionization processes and reactions, the effective σ values for many substituents are related by eq 8. He assumes that substituents such as CH₂X are not conjugated with the benzene nucleus (our results³³ with para-disubstituted benzenes indicate that CH₂Cl, for example, is a donor substituent), and concludes that many of the usual resonance acceptor

$$\sigma_p = (1.14 \pm 0.05)\sigma_m \tag{8}$$

substituents (NO₂, CF₃, CN, SO₂Me) also have negligible resonance interaction with the benzene ring as measured by their effect on substituent reactions. However, as Exner himself indicates, his results can also be explained if the CO₂H group in benzoic acids with a para-electron-acceptor substituent strongly impedes the mesomeric interaction of the acceptor substituent and the ring. As Exner points out, the simple electrostatic I effect, either by transmission through σ bonds or directly through space, cannot explain $\sigma_{I(p)} > \sigma_{I(m)}$. He therefore interprets his results in terms of the π inductive effect, *i.e.*, alternating polarity in the π system due to the inductive effect of the ring-substituent σ bond. We previously¹ concluded that the contribution of this effect is small because some substituents have a large resonance effect relative to the inductive effect (for carbethoxyl $\sigma_R^{\circ} = 0.180$ and $\sigma_I = 0.21$), whereas other substituents make a very small resonance contribution and a large inductive one (for trichloromethyl $\sigma_{\rm R}^{\circ}$ = 0.00 and $\sigma_{I} = 0.42$).¹ Our further results substantiate this conclusion. Pertinently, for NMe₃⁺, $\sigma_{I} = 0.92^{58}$ whereas $\sigma_R^\circ = -0.150$ (see below and ref 33 for a discussion of the sign of this latter number); the results for the substituent SO₂Me and SO₂Cl are also significant. Another example from the recent literature is the tricyanomethyl group, which has $\sigma_{I} = 0.47$ and $\sigma_{R}^{\circ} =$ $-0.01.^{33}$ Trimethoxymethyl and CH₂NH₃⁺, which presumably have significant inductive effects, have also $\sigma_{\rm R}^{\circ} = 0$ by the ¹⁹F nmr criterion.⁵⁹ Dewar⁶⁰ has also now adduced evidence that the group CF₃ acts mainly by

(52) T. Fueno, T. Okuyama, and J. Furukawa, Bull. Chem. Soc. Jap., 39, 569 (1966).

(53) R. Golden and L. M. Stock, J. Amer. Chem. Soc., 88, 5928 (1966).

- (54) M. J. S. Dewar and A. P. Marchand, *ibid.*, 88, 3318 (1966).
 (55) W. Adcock and M. J. S. Dewar, *ibid.*, 89, 379 (1967).
 (56) A. Talvik, P. Zuman, and O. Exner, *Collection Czech. Chem.*
- Commun., 29, 1266 (1964). (57) O. Exner, Tetrahedron Letters, 815 (1963).

(58) C. D. Ritchie and W. F. Sager, Progr. Phys. Org. Chem., 2, 335 (1964).

(59) J. K. Williams, E. L. Martin, and W. A. Sheppard, J. Org. Chem., 31, 919 (1966).

(60) M. J. S. Dewar and A. P. Marchand, J. Amer. Chem. Soc., 88, 354 (1966).

field rather than a π -inductive effect. Hence we feel that Exner's results⁵¹ must have some other explanation: conjugation of a resonance-acceptor substituent Y may not be very different for $YC_6H_4CO_2H$ and $YC_6H_4CO_2^-$ in the polar and hydrogen-bonding media in which the reactions were investigated; the group X could also affect the conjugation of the group CH_2X with a benzene ring.

The transmission of substituent effects through nonbonded repulsions of the π electrons of the ring away from free electron pairs on the substituent is interpreted by some authors⁶¹ as being related to the π -inductive effect. Recently it was suggested^{61,62} that most of the interactions of the substituent in aniline and related compounds with the benzene ring arise from this effect. The present work could be interpreted on this concept as regards amino, alkoxyl, and halogen substituents. It is not clear how such an effect would act from the trifluoromethyl substituent; the free electrons on the fluorines are comparatively close to the π system of the ring and hence might repel the ring π electrons; alternatively, an attraction of the π electron by the fluorine atoms could be postulated which would be more in accord with the experimental findings.

Sheppard⁶³ has proposed that fluorinated substituents donate electrons specifically to the *meta* positions in substituted benzenes by means of a bonding interaction with the adjacent ortho ring atoms (VIII-X). This type of interaction would explain the high electron density at the meta relative to the ortho and para positions in such compounds and is supported by other data advanced by Sheppard.63 The alternative formulations are fluorine hyperconjugation (XI \leftrightarrow XII) and the π inductive effect (XIII). Dewar and Marchand⁶⁰ have criticized Sheppard's proposal for three reasons: (i) no analogy for direct electron delocalization by a side chain, (ii) no analogy for a resonance effect specifically directed to the meta position, and (iii) the data can be satisfactorily explained by the π -inductive effect. Sheppard⁶³ has presented his reasons for considering the π -inductive explanation inadequate; it is argued above that in general the π -inductive effect does not make a large contribution in these systems, and Dewar in his own latest work⁴³ has abandoned the concept of the dominant π -inductive effect. Our studies with polysubstituted benzenes33,64 have not revealed any

(61) D. T. Clark, Chem. Commun., 390 (1966).

(62) J. C. Brand, D. R. Williams, and T. J. Cook, J. Mol. Spectry., 20, 193 (1966)

(63) W. A. Sheppard, J. Amer. Chem. Soc., 87, 2410 (1965).

(64) A. R. Katritzky, M. V. Sinnott, T. T. Tidwell, and R. D. Topsom, unpublished work.

systematic deviation with trifluoromethyl substituents that might be attributed to these specific substituentring interactions. However, in the monosubstituted series there are several substituents, mostly fluorinated ones, that give finite σ_R° values as determined by our method, whereas these values determined by other techniques are zero. The reasons for this behavior are not yet clear. Recent work involving bridgehead fluorine atoms does not support the concept of fluorine "nobond" resonance.65

Dewar and Marchand⁵⁴ suggest that fluorine chemical shifts of benzene derivatives are not suitable for the determination of σ parameters because the chemical shifts are primarily determined by the electrostatic polarization of the $C-F \sigma$ bond, in contrast to the effect of charge distribution on chemical reactivities and other physical properties. However, our infrared results, the ¹⁹F chemical shift parameters, and chemical reactivities all have much the same dependence on structure.

The origin of the resonance component of the substituent effects of saturated alkyl groups is of great interest, and hyperconjugation is a popularly assumed source. Additional methyl groups on carbon or uncharged nitrogen increase the effectiveness of electron donation (see Table I) (the opposite trend is noted for substituents on charged nitrogen, probably due to solvation effects). These findings would indicate that the C-C bond is able to enter into hyperconjugation at least as easily as the C-H bond. Nonbonded repulsion of the ring π electron by the σ electrons in the C-H or C-C bonds, similar to the nonbonded repulsions discussed above, provides an alternative explanation to hyperconjugation.

Discussion of Substituent Effects by Classes. Deuteriobenzene

We ascribe the small band at 1594 cm⁻¹ to the f + gcombination⁴² believing that deuterium has a $\sigma_{\rm R}^{\circ}$ not significantly different from zero. Previous work on secondary deuterium isotope effects^{66,67} suggests that any difference between resonance interactions of hydrogen and deuterium is indeed minute.

Halogens. As previous workers, 59 we find similar $\sigma_{\rm R}^{\circ}$ values for chlorine, bromine, and iodine, but a considerably more negative value for fluorine. The effects of the widely different electronegativities,68 polarizabilities, bond distances, masses, and d-orbital acceptor properties³² of the heavier halogens evidently partly cancel. We discuss such effects later in connection with para-disubstituted derivatives.33

Polyvalent iodine compounds show the qualitative electron-withdrawing character expected; for the substituent ICl₂, a σ_R° of zero was found by the nmr method.⁶⁹ Unfortunately PhIO and PhIO₂ were insoluble in all the available solvents and could not be investigated. Interactions between the phenyl rings and the I⁺ in diphenyliodonium salts were discussed by Beringer and Galton.70

(65) A. Streitwieser and D. Holtz, J. Amer. Chem. Soc., 89, 692 (1967); A. Streitwieser, A. P. Marchand, and A. H. Pudjaatmaka, *ibid.*, 89, 693 (1967).

- (66) E. A. Halevi, Progr. Phys. Org. Chem., 1, 109 (1963).
 (67) D. D. Traficante and G. E. Macial, J. Amer. Chem. Soc., 87,

4917 (1965). (68) L. Pauling, "The Nature of the Chemical Bond," Cornell University Press, Ithaca, N. Y., 1960.

(69) W. A. Sheppard, unpublished results privately communicated.

Oxygen Linked. As expected, little variation is found for the σ_R° values of substituents OR where R is hydrogen or various alkyl groups. Oxygen-linked substituents carrying groups capable of conjugative electron withdrawal from the oxygen have less negative $\sigma_{\rm R}^{\circ}$ values in the order OPh > $OSO_2Me > OAc \ge OC$ -OCF₃. Evidently, inductive withdrawal is of lesser importance than π overlap in hindering the mesomeric donor properties of oxygen because COR ($\sigma_{\rm R}^{\circ}$ of OCOMe = 0.235) is more effective than SO₂R (σ_R ^o ° of $OSO_2Me = 0.264$) in reducing the σ_R° of OH (0.402); however, OCF₃ also has a low value (0.250). The O⁻ substituent shows a value of σ_R° considerably enhanced compared with that for OH (O⁻, 0.593; OH, 0.424 for D_2O solution), as expected from the great conjugative ability of anionic oxygen.

Sulfur Linked. The divalent sulfur compounds show values which are smaller than those of the analogous oxygen derivatives by $0.18-0.26\sigma_R^\circ$ unit. The smaller conjugative effect of sulfur is in contrast to its superior nucleophilicity over oxygen; however, when acting as nucleophiles, it is the σ electrons which are involved. The poorer availability of the sulfur π electrons compared with oxygen is due partly to less overlap resulting from the large size of the 3p orbitals, but there is also some cancellation due to acceptance of electrons by the sulfur atom into its d orbitals, as will be discussed later.33

Among oxygenated sulfur-linked substituents, the groups SO₂O⁻⁻, SO₂Ph, SO₂Me, SO₂OMe, SO₂Cl represent a series of groups of increasing electron-attracting power ($\sigma_{\rm R}^{\circ} = 0.00 \, [D_2O]$, 0.064, 0.069, 0.087, 0.108), as would be predicted; the relative positions of Me and Ph in this series confirm that electron withdrawal from the benzene ring is now occurring. In the lower oxygenated state only SOO⁻ ($\sigma_R^{\circ} = 0.00$) and SOPh (0.065) are available; there are no significant differences between these values and those in the higher oxidation state.

Nitrogen Linked. (i) Alkylanilines. Alkylation of aniline causes an interesting variation in $\sigma_{\rm R}^{\circ}$ values, which probably reflects both electronic and steric influences. There is no significant effect due to deuterium substitution on nitrogen (NHMe and NDMe have $\sigma_{\rm R}^{\circ} = 0.522$ and 0.523, respectively), but alkyl substitution gives more complex behavior $(ND_2, 0.467;$ NDMe, 0.523; NMe₂, 0.533) in which the difference between NDMe and NMe₂ is surprisingly small and may represent a conformational preference. Increasing the size of the alkyl group in the secondary amines has but little effect (NHEt, 0.520; NH-n-Bu, 0.536; NH-i-Pr, 0.533), but diethylaniline shows a significantly higher value (0.571) than that of the dimethyl analog (see below).

Nitrogen Linked. (ii) Cyclic Imines. We studied N-phenyl-substituted cyclic imines because of recent interest.71,72 Comparison of the oscillator strengths of the two readily accessible absorption bands in the ultraviolet spectra suggested⁷¹ that the nitrogen-phenyl ring interaction increased as the size of the imine ring was varied in the order three < six < four < five, and that

1765

the resonance interaction for N,N-dimethylaniline was similar to that for N-phenylazetidine. Since the nitrogen configuration in an azetidine cannot be trigonal, this result was interpreted⁷¹ as evidence for an essentially tetrahedral configuration about the nitrogen atom in N,N-dimethylaniline and related amines. Carbon-13 magnetic shielding results72 confirmed the relative order of resonance interactions for the three-, five-, and sixmembered ring imines measured, and N,N-diethylaniline also showed a marked increase in interaction over N,N-dimethylaniline, near to that for N-phenylpyrrolidine. The relative basicities of dimethyl- and diethylaniline are in the opposite sense, probably due to steric inhibition to hydrogen bonding in the free diethyl compound. The ionization potentials⁷³ and rates of electrophilic substitution74a also indicate enhanced electron availability in the diethylaniline ring, and results mentioned above confirm this.

We now find that the carbon-13 magnetic shielding results, the f sums, and the exhaltations of molar refraction (Table IV) all correlate reasonably well with the

Table IV. σ_R° Values from the Integrated Intensities (A) of the v16 Bands in Monosubstituted Benzenes^a

Substituent	A	$\pm \sigma_{\rm R}^{\circ}$	C _{para} -C _{meta}	f sum	$\Delta R_{\rm D}$
-NMe ₂	5098	0.53	12.5°	0.33	1.49
$-NEt_2$	5852 ^b	0.57	13.6	0.34	1.58
$-N(CH_2)_2$	2663	0.38	7.4	0.20	0.43
$-N(CH_2)_3$	5461	0.55		0.33	1.60
$-N(CH_2)_4$	7039 ^b	0.63	13.9	0.37	1.64
$-N(CH_2)_5$	3919 ^b	0.47	10.3	0.26	0.96

^a ¹³C chemical shift differences, the sum of the oscillator strengths (f sum), and the exhaltation in molar refraction are also listed (from ref 71 and 72). ^b An additional peak in the spectrum of N-phenylpyrrolidine and shoulders in the other two spectra occurred at 1600-1605 cm⁻¹. The intensities were included in the total since they will be almost entirely derived from the ν_{16} absorptions by Fermi resonance. ^c In parts per million with reference to benzene.

infrared-derived σ_R° values, indicating a compound dependence on resonance interactions. The σ_R° value for N-phenylpyrrolidine is still higher than that for N,Ndiethylaniline. Steric interactions between the α -hydrogens on the imine ring and o-hydrogens on the phenyl group⁷¹ probably cause a preferred conformation in Nphenylpyrrolidine favorable for interaction of the nitrogen lone pair with the aromatic nucleus.74b The increase in interaction in N-phenylpyrrolidine over N,Ndiethylaniline may thus result from a steric enhancement and be broadly analogous to the increased interaction between alkyl groups and the nucleus in acenaphthene compared to 1,8-dimethylnaphthalene where the substituents are free to rotate.⁷⁵ α -Hydrogen-ohydrogen interactions in N-phenylpiperidine should result in a preferred conformation less favorable for interaction⁷¹ and the lower $\sigma_{\rm R}^{\circ}$ value found confirms

⁽⁷⁰⁾ F. M. Beringer and S. A. Galton, J. Org. Chem., 31, 1648 (1966).

⁽⁷¹⁾ A. T. Bottini and C. P. Nash, J. Amer. Chem. Soc., 84, 734 (1962)

⁽⁷²⁾ C. P. Nash and G. E. Maciel, J. Phys. Chem., 68, 832, (1964).

⁽⁷³⁾ P. G. Farrell and J. Newton, *ibid.*, 69, 3506 (1965).
(74) (a) R. P. Bell and E. N. Ramsden, J. Chem. Soc., 161 (1958).
(b) Recent works, e.g., ref 61 and 62, have suggested that most of the interaction in aniline and related compounds arises from repulsion between the unshared electrons on the nitrogen atom and the π system of the ring rather than from delocalization. The present work measures the actual electronic disturbance in the ring and can be interpreted

equally well by either concept. (75) A. Fischer, W. J. Mitchell, J. Packer, R. D. Topsom, and J. Vaughan, J. Chem. Soc., 2892 (1963).

this (cf. the cyclopentyl- and cyclohexylbenzene comparison; see later). The sterically preferred conformation in N-phenylazetidine and N-phenylaziridine should again be the most suited for electronic interaction, and here the smaller effects observed probably result from the increased s character of the lone-pair orbitals.

We conclude that the similar electronic interactions found for N-phenylazetidine and N,N-dimethylaniline are not unambiguous evidence for similar configurations about the nitrogen atoms, and that dissimilar configurations are favored by the infrared data.

Nitrogen Linked. (iii) Further Tricoordinated Nitrogen. Phenylation at the nitrogen causes irregular behavior (NH₂, 0.467; NHPh, 0.504; NPh₂, 0.438), but trifluoromethylation results in a large reduction in $\sigma_{\rm R}^{\circ}$ [to 0.132 for N(CF₃)₂]. The groups NHNH₂, NHOH, and NHNHPh show δ_R° values of 0.487, 0.222, and 0.441, respectively, which indicate that whereas substitution in the amino group of NH₂ and NHPh causes small variation only, hydroxylation has a large effect. Acylation also reduces the ring conjugation of amines, but the groups NHAc and NMeAc are still powerful electron donors with σ_R° values of 0.413 and 0.408, respectively. Sulfonamido derivatives were unfortunately insufficiently soluble for determination.

Nitrogen Linked. (iv) Multiply Bonded and Cationic Substituents. The N=O and N=NPh groups both have rather small σ_R° values (0.071 and 0.056, respectively). The direction of the effect is not defined by the results for the monosubstituted compounds; we intend to deduce this from suitable polysubstituted derivatives. The substituents with cumulated double bonds N=C=O, N=C=NPh, and N=C=S show comparatively large effects ($\sigma_R^\circ = 0.403, 0.461, 0.354$, respectively); we believe that these substituents are resonance donors, as indicated by previous workers,⁷⁶ but plan to investigate polysubstituted compounds to confirm this (cf. ref 33). However, in thionylaniline, the substituent NSO has σ_R° of only 0.087. The triply bonded diazonium group N⁺ \equiv N has the high σ_R° of 0.304; resonance withdrawal by this group is considerably greater than by NO₂ ($\sigma_{\rm R}^{\circ} = 0.174$).

Among cationic nitrogen derivatives, we have measured ND₃⁺, NMeD₂⁺, NMe₂D⁺, and NMe₃⁺ which show values of 0.183, 0.149, 0.136, and 0.149, respectively. These groups are electron donors by the resonance effect as is indicated by results for para-33 and meta-disubstituted⁶⁴ compounds. This evidence and the implication of these results are discussed later.³³ The smaller magnitude of the effect when H is replaced by Me is probably a result of solvation being most effective in dispersing charge in the NH_{3}^{+} compound.

The amidinium group N+D=CMe-NDPh shows a strong effect ($\sigma_R^{\circ} = 0.585$), indicating considerable electron donation to the ring.

Carbon Linked. (i) Alkyl and Cycloalkyl Groups. The small increase in electron donor ability in series Me < Et < i-Pr < t-Bu indicates that any hyperconjugative release from a C-C bond is at least as important as that from a C-H bond.

The electronic interaction of a cyclopropane ring with adjacent unsaturated groups has attracted much attention⁷⁷ including theoretical,⁷⁸ spectral,⁷⁹ and reac-

(76) K. Antos, A. Martvori, and P. Kristian, Collection Czech. Chem. Commun., 31, 3737 (1966).

tivity⁸⁰ studies. Recent interest^{81,82} has centered on the preferred conformations of such molecules; phenylcyclopropane exists⁸² preferentially with the plane of the aromatic nucleus bisecting that of the three-membered ring, despite the resultant nonbonded interactions.

Cyclopentyl and cyclohexyl groups are usually assumed to have electronic effects similar to acyclic alkyl substituents, but some doubt exists regarding the cyclobutyl group.⁸³ Thus ultraviolet spectra suggest the absence of any special electronic interactions with unsaturated groups, but the Raman spectra of arylcyclobutanes have been interpreted in an opposite sense.

The present σ_R° values show clearly that the cyclopropyl group interacts more strongly with the aromatic nucleus than do acyclic substituents such as the isopropyl group. Published σ values (cyclopropyl, 0.22;⁸⁴ isopropyl, 0.1585) show a corresponding increase in magnitude supporting the assumption that this results from a change in the resonance contribution. The cyclopropyl group is usually considered^{77,86,87} to act only as an electron donor and we shall later report results on parasubstituted cyclopropylbenzenes to confirm this. We are currently investigating the temperature dependence of resonance interactions in this and other alkylbenzenes to provide direct evidence on conformational preferences.

There seems to be no significant increase in electronic interaction in cyclobutylbenzene over acyclic alkylbenzenes. A higher σ_R° value was found for cyclopentyl (0.136) than either cyclobutyl (0.124) or cyclohexyl (0.128) substituents. This may reflect that the conformation with the lowest nonbonded interactions in cyclopentylbenzene is also the most favorable for hyperconjugation of the α -hydrogen with the aromatic ring (molecular models). Ultraviolet results suggest⁸⁸ greater interaction in cyclopentyl- than cyclohexylbenzene.

(ii) Substituted Methyl Groups. A single inductivewithdrawing substituent in a methyl group reduces the Me σ_R° value of 0.099 to 0.090 (CH₂CN), to 0.054 (CH₂-OMe), and essentially to 0 (CH₂OH, CH₂Cl, CH₂- ND_{3}^{+}). Benzyl alcohol and chloride and the trimethyl-

(77) M. Yu. Lukina, Russ. Chem. Rev., 31, 419 (1962).

(78) A. D. Walsh, Trans. Faraday Soc., 45, 179 (1949); C. A. Coulson and W. E. Moffitt, Phil. Mag., 40, 1 (1949); R. Hoffmann, Tetrahedron Letters, 3819 (1965).

(79) See, for examples: A. L. Goodman and R. H. Eastman,
J. Amer. Chem. Soc., 86, 908 (1964); L. A. Strait, R. Ketcham,
D. Jambotkar, and V. P. Shah, *ibid.*, 86, 4628 (1964); R. H. Eastman and S. K. Freeman, *ibid.*, 77, 6642 (1955); T. Shono, T. Morikawa,
A. Oku, and R. Oda, Tetrahedron Letters, 791 (1964).

(80) See, for example: N. C. Deno, H. G. Richey, J. S. Liu, D. N. Lincoln, and J. O. Turner, J. Amer. Chem. Soc., 87, 4533 (1965); L. B. Jones and V. K. Jones, Tetrahedron Letters, 1493 (1966); J. Smejkal, J. Jonas, and J. Farkas, Collection Czech. Chem. Commun., 29, 2950

(1964). (81) T. Sharpe and J. C. Martin, J. Amer. Chem. Soc., 88, 1815 (1966) and references therein.

(82) G. L. Closs and H. B. Klinger, *ibid.*, 87, 3265 (1965); H. C.
Brown and J. D. Cleveland, *ibid.*, 88, 2051 (1966); L. V. Vilkov and
N. I. Sadova, *Dokl. Akad. Nauk SSSR*, 162, 486 (1965).
(82) M. Xu. Luking, *Bus. Class. Res.* 625 (1962).

 (83) M. Yu. Lukina, *Russ. Chem. Rev.*, 635 (1963).
 (84) R. Ya. Levina, P. A. Gembitskii, L. P. Guseva, and P. K. Agasyan, Zh. Obshch. Khim., 34, 146 (1964).

(85) H. H. Jaffe, Chem. Rev., 53, 191 (1953).

(86) A. P. Gray and H. Kraus, J. Org. Chem., 31, 399 (1966).

(87) But one reference suggests that a cyclopropyl group can also act as an acceptor: R. Y. Levina, Y. S. Shabarov, K. S. Shanazarov, and E. G. Treshchova, Vestn. Mosk. Univ., Ser. Mat., Mekh., Astron.,

Fiz. i Khim., 12, 145 (1957), as reported in ref 77. (88) W. W. Robertson, J. F. Music, and F. A. Matsen, J. Amer. Chem. Soc., 72, 5260 (1950).

benzylammonium cation all show total intensities below 100 but above 50, and this was used in setting the intensity of the combination band (eq 5) as 100 ± 50 .

Two or more inductive-withdrawing substituents in a methyl group also effectively reduce the $\sigma_{\rm R}^{\circ}$ value to zero as is found for the groups CHBr2, CHCl2, CH-(OMe)₂, and for CCl₃, CBr₃, and C(OMe)₃; all these compounds show total intensities in the range 50-100. However, polyfluoro substitution, as in CF_3 , C_2F_5 , yields electron-acceptor values of $\sigma_{\rm R}^{\circ}$ of 0.111 and 0.075.

Phenyl substituents increase somewhat the σ_R° value of methyl to 0.117 (CH₂Ph) and 0.113 (CHPh₂).

(iii) CC Multiple Bonds. We have recorded values for several vinyl derivatives PhCH=CHX where X =H, CO_2Me , NO_2 , and $N(CH_2CH_2)_2CH_2$. These results are less reliable than most because the compounds show the $v_{C=C}$ mode at ca. 1630 cm⁻¹ and intensity sharing could occur between the two modes. We plan to study polysubstituted analogs, both to test the validity of the $\sigma_{\rm R}^{\circ}$ values found and to determine their sign.

The acetylenic substituents $C \equiv CH$ and $C \equiv CPh$ show $\sigma_{\rm R}^{\circ}$ values of 0.072 and 0.152, respectively: again the study of polysubstituted compounds is needed to confirm the direction of the effect.

(iv) Other Unsaturated Compounds. The carbonyl derivatives COY are all strongly electron withdrawing; the effect varies in the series: COOMe (0.155) \leq $COOEt (0.180) < COPh (0.190) < COCl (0.213) \leq$ COMe (0.219) < CHO (0.244) < COOH (0.291). The position of OH in this series is undoubtedly affected by the association of benzoic acid to hydrogen-bonded dimers in CHCl₃ solution. However, without considering OH, the order in this series is in marked contrast to the corresponding SO₂Y series (see above). Comparison shows that the two series reflect the strong mesomeric interaction of Y with CO, while Y and SO₂ have mainly an inductive interaction.

Acknowledgments. We thank the Research Committee of the New Zealand Universities' Committee for grants and for a Research Fund Fellowship (to R. E. J. H.), the 3M Company (Great Britian) Ltd. for a Studentship (to R. T. C. B.), and the U. S. National Institutes of Health for a Postdoctoral Fellowship (to T. T. T.). Part of this work was carried out during the tenure of a Nuffield Travelling Fellowship (by R. D. T.). We are very grateful to Professor G. Illuminati (Rome) and Dr. W. A. Sheppard (Wilmington) for the gift of compounds.

Infrared Intensities as a Quantitative Measure of Intramolecular Interactions. IV.¹ para-Disubstituted Benzenes. The ν_{16} Band near 1600 cm⁻¹

P. J. Q. English,² A. R. Katritzky,² T. T. Tidwell,^{2,3} and R. D. Topsom⁴

Contribution from the School of Chemical Sciences, University of East Anglia, Norwich, England, and the School of Physical Sciences, La Trobe University, Melbourne, Australia. Received September 5, 1967

Abstract: The integrated intensities of the v_{16} vibration for many para-disubstituted benzenes are correlated by the relation $A_{para} = 11,800 (\sigma_{\rm R}^{\circ}1 - \sigma_{\rm R}^{\circ}2)^2 + 170$. Discrepancies from this relation are interpreted as due to direct interactions between the substituents; such interactions between acceptor and donor substituents are proportional to $(\sigma^+ - \sigma)$ values. Halogens other than F act as d-orbital acceptors, and NO₂ is found to interact with strong acceptor groups. The relation enables the sign of the resonance effect to be directly determined; ND_3^+ and NMe₃⁺ groups are shown to be resonance donors.

Previous papers in this series^{1,5} have been concerned with the quantitative significance of the infrared intensities of the ring-stretching bands of monosubstituted benzenes. In particular a quantitative relation (eq 1) was found between the integrated area, A, of the bands near 1600 and 1585 cm⁻¹ and σ_R° for the substituent. We have now extended this work to polysubstituted analogs, and the present paper records

- (1) Part III: R. T. C. Brownlee, A. R. Katritzky, T. T. Tidwell, and (2) School of Chemical Sciences, University of East Anglia, Norwich,
- England.
- (3) Department of Chemistry, University of South Carolina, Columbia, S. C.
- (4) School of Physical Sciences, La Trobe University, Melbourne, Australia.
- (5) (a) R. T. C. Brownlee, A. R. Katritzky, and R. D. Topsom, J. Amer. Chem. Soc., 87, 3260 (1965); (b) ibid., 88, 1413 (1966).

and discusses the results for para-disubstituted benzenes.

$$A_{\rm mono} = 17,600(\sigma_{\rm R}^{\,\circ})^2 + 100 \tag{1}$$

Some years ago, one of us, in connection with a wider investigation into the infrared spectra of heteroaromatic compounds,⁶ measured the frequencies and apparent extinction coefficients for the characteristic vibrations of many para-disubstituted benzenes.7 At that time it was pointed out that the intensity variations of the 1600cm⁻¹ band could be qualitatively explained on the basis of the theory earlier developed⁸ for monosubstituted

(7) A. R. Katritzky and P. Simmons, J. Chem. Soc., 2051 (1959).
(8) A. R. Katritzky, *ibid.*, 4162 (1958).

⁽⁶⁾ For a review see A. R. Katritzky and A. P. Ambler, "Physical Methods in Heterocyclic Chemistry," Vol. II, Academic Press Inc., New York, N. Y., 1963, p 165.